Углублённое рассмотрение электромагнитных явлений для автозвука

явление электромагнитной индукции токаНаконец пришёл черёд вновь обратиться к физике, а конкретно к электромагнитным явлениям, которых мы уже касались ранее и я пытался объяснить всё доступным и максимально понятным языком, поскольку не все люди обладают базовым багажом знаний даже в рамках школьной программы. Происходит это по разным причинам: кто-то пропускал уроки физики в школе; кто-то не считал их достаточно интересными и полезными до тех пор, пока не столкнулся с необходимостью их применения на практике в автозвуке; а кому-то просто будет полезно почитать теорию для собственного развития. Так или иначе, в данной статье рассмотрим вновь электромагнитные явления, только на этот раз постараемся углубиться в тему и глубже познакомиться с царящими в этой области закономерностями. В частности будет рассмотрена ключевая тема про явление электромагнитной индукции тока как одного из самых значимых в разрезе физических явлений связанных с электричеством и магнетизмом.

Тема может быть сложна для освоения, но как и всегда - польза от самообучения очевидна и не подлежит сомнению, а в области автозвука вовсе призвана творить чудеса и поможет избежать многих досадных "дилетантских" ошибок, которые могут дорого обойтись владельцу ценой погоревшего оборудования (в лучшем случае), или вовсе пожара в случае неправильной коммутации и легкомысленного отношения к работе. Поэтому попытаемся вновь досконально разобраться в теории, которую впоследствии будем смело применять на практике и чувствовать себя более уверенно в своём любимом деле. Традиционно я попытаюсь донести всю теорию максимально доступным языком, используя минимум формул, больше опираясь на объяснение непосредственного явления. Закрепление теории лучше всего происходит на практике, в работе с непосредственной автомобилем, при непосредственной попытке установить звук, произвести необходимые расчёты, доработать имеющиеся электрические схемы или же сделать свои с нуля. В этом случае понять явление электромагнитной индукции тока и другие сопутствующие не составит большого труда.

Линии магнитного поля и свойства

Полезно вспомнить общие сведения о магнитном поле. Оно образуется вокруг проводника, по которому двигаются электрические заряды или протекает электрический ток. В этом случае образуется сразу два вида поля - электрическое и магнитное поля. Таким образом, вокруг проводника/провода с током будет наблюдаться и электрическое и одновременно магнитное поле, т.к. они оба возникают при условии протекания электрического тока. явление электромагнитной индукции тока-01Появившись, магнитное поле имеет свойство воздействовать на другие движущиеся электрические заряды, а точнее на сторонний электрический ток, например, протекающий в другом проводнике поблизости от первого. Такое воздействие магнитного поля материально и определяется степенью - оно может быть сильнее или слабее. В автомобиле, для примера, такое взаимодействие можно наблюдать на примере проводки, которая способна оказывать ощутимое влияние друг на друга и создавать наводки/помехи, отчётливо слышимые в динамиках.

Магнитное поле с его сферической формой образуется линиями, которые можно представить вокруг объекта под напряжением и даже увидеть при помощи мелкой металлической крошки. Таких магнитных линий вокруг объекта будет большое количество, вместе они образуют целый спектр. Направление магнитных линий определяется магнитной стрелкой. Магнитные линии всегда замкнуты, поэтому у них нет понятия "начало линии" или "конец линии". Эти линии никогда не пересекаются, не завиваются и не взаимодействуют друг с другом. Магнитные линии в совокупности формируют форму магнитного поля и по их "кучности" в какой-то точке пространства можно судить о силе магнитного воздействия в этом месте.
явление электромагнитной индукции тока-02
Если линии располагаются параллельно друг относительно друга и в целом упорядоченно, если их плотность более менее равномерна, то такие линии образуют однородное магнитное поле. Наоборот, если линии искривляются в пространстве и разрежены друг относительно друга, то они своей совокупностью образуют неоднородное магнитное поле. Эти два вида магнитного поля отличаются друг от друга во многом:

  • Магнитная сила воздействия неоднородного поля различна в той или иной точке пространства, тогда как эта сила одинакова по модулю и направлению у однородного поля.
  • По взаиморасположению линий в пространстве: у однородного поля линии параллельны друг другу и кучность их одинакова; у неоднородного поля линии искривляются и кучность их различна.
  • Неоднородное поле находится вне магнита или проводника с электрическим током, тогда как однородное поле образуется внутри магнита.

Однородные магнитные поля чаще всего наблюдаются внутри катушки с большим количеством витков (например в катушке динамика) или внутри обычного полосового магнита, тогда как неоднородное магнитное поле чаще всего располагается вне магнита, например вокруг силового кабеля питания.

Направление тока и линий магнитного поля

Поскольку явление электрического тока - это направленное движение заряженных частиц, то можно сказать, что у электрического тока есть направление. Условно-правильным направлением движения электронов в замкнутой системе можно считать направление от минусового/отрицательного "-" к плюсовому/положительному "+". Однако, общепринятая терминология направления потока предполагает обратное обозначение, при котором заряды движутся от положительного полюса к отрицательному. На основе этой общепринятой терминологии создаются все современные электронные устройства, в том числе и полярные, просто обозначение полярности в схеме этих устройств уже изначально предусматривает обратное движение потока электронов, однако схематически подключается от "плюса" к "минусу", как и принято уже давно.
явление электромагнитной индукции тока-03
Вместе с течением тока вокруг проводника образуется магнитное поле, линии которого так же имеют направленность, зависящую от направления течения электронов. Направленность магнитных линий определяется по-разному, самый простой способ "правой руки", когда обхватывая провод/проводник рукой большим пальцем по направлению тока мысленно представляется, что четыре пальца руки как бы показывают направление магнитных линий, "оборачивающих" проводник. Так же направление тока можно определить по взаимодействию двух параллельных проводников под напряжением: если они притягиваются друг к другу - значит ток течёт в одном направлении; если отталкиваются - в разных.

Индукция магнитного поля

Для того чтобы определить силу воздействия магнитного поля на проводник с током, существует понятие магнитной индукции. Магнитная индукция - это количественная характеристика магнитного поля, определяющая силу его воздействия на движущийся заряд.
явление электромагнитной индукции тока-04
Магнитная индукция зависит от многих факторов как со стороны магнитного поля, так и со стороны проводника с электрическим током:

  • Магнитного поля со стороны магнита
  • Силы тока, протекающего в проводнике, на который воздействует магнит
  • Длины проводника с током
  • Угла между направлением движения электронов (тока) в проводнике и направления воздействия магнитного поля

Поскольку магнитная индукция величина направленная, то её можно считать векторной. Магнитная индукция (B) определяется отношением силы со стороны магнитного поля (F), направленной в перпендикулярном направлении скорости движения электронов, на произведение силы тока в проводнике (I) на его длину (l). Таким образом выводится формула для расчёта, где B - векторная (направленная) величина магнитной индукции (1 Тесла [Тл]), F - сила со стороны магнитного поля (1 Ньютон [Н]), I - сила тока (1 Ампер [A]), l - длина проводника (1 метр [м]):

    \[B=\frac{F}{Il} \]


явление электромагнитной индукции тока-05
В классическом случае подразумевается, что воздействие магнитного поля на проводник с током осуществляется под прямым углом (по представленной формуле). Если вектор линий магнитного поля перпендикулярен площади контура, то магнитный поток максимален. Если вектор линий магнитного поля параллелен площади контура, то магнитный поток равен нулю. Направленные линии магнитного поля так же называют и линиями магнитной индукции. Применительно к однородному и неоднородному магнитному полям с позиции магнитной индукции можно сказать, что в однородном поле значение и направленность линий магнитной индукции в каждой точке одинаково, а в неоднородном поле нет.

Электромагнитная индукция

Возникновение электрического тока в замкнутом проводнике (замкнутой цепи) возможно при помощи обратного преобразования из магнитного потока в электрический. Это явление называется электромагнитной индукцией. Возникновение электрического тока в замкнутой цепи возможно только при условии воздействия на проводник в замкнутой цепи переменного/изменяющего магнитного поля. Такие изменения магнитного потока можно представить изменением числа магнитных линий, которые пронизывают контур с током (например катушку). Самый простой случай возникновения электромагнитной индукции в проводнике - это физическое движение/перемещение магнита относительно замкнутого проводника, в котором регистрируется электрический ток во время такого движения магнита. Если рассматривать явление электромагнитной индукции тока на примере классической катушки с намотанным на неё проводником, то полученный таким образом индукционный ток в следствие движения магнита внутри катушки будет зависеть от:

  • Количества витков катушки
  • Скорости изменения магнитного потока
  • Свойств и типа (материала) самого магнита

явление электромагнитной индукции тока-06
Интересная и важная особенность, сопровождающая явление электромагнитной индукции тока: когда магнит движется в катушке с проводником, то в зависимости от направления движения будет изменяться и направление течения тока в проводнике. Величина выработанного тока в случае электромагнитной индукции зависит от свойств магнитного поля. Поскольку электрический ток появляется в результате действия электрического поля, то в случае электромагнитной индукции происходит процесс образования электрического поля из магнитного с помощью магнитного потока.

Магнитный поток отвечает за количество направленных магнитных линий, проходящих через ограниченную площадь или контур. Величина обозначается символом Sl (1 вебер [Вб]). Величина магнитного потока определяется количеством магнитных линий в нём. Магнитный поток всегда характеризует весь магнит целиком, а не какое-то его отдельное проявление в определённой точке, магнитный поток можно считать энергетическим потенциалом отдельно взятого магнита.
явление электромагнитной индукции тока-07
Магнитный поток и впоследствии вырабатываемый в результате электромагнитной индукции ток зависит от некоторых закономерностей:

  • Магнитный поток прямо пропорционален интенсивности магнитной индукции.

        \[Sl\sim{B}\]


    (где Sl - магнитный поток (1 вебер [Вб]), B - магнитная индукция (1 Тесла [Тл]))

  • Магнитный поток прямо пропорционален площади поверхности, через которую проходят линии магнитной индукции.

        \[Sl\sim{S}\]


    (где Sl - магнитный поток (1 вебер [Вб]), S - площадь поверхности)

  • Воздействие магнитного потока зависит от угла расположения площади поверхности/контура по отношению к источнику магнитного поля.

        \[Sl = Sl(\alpha)\]

  • Сила полученного в результате электромагнитной индукции тока напрямую зависит от скорости изменения магнитного потока.

        \[I\sim\frac{\Delta Sl}{\Delta t}\]


    (где I - сила тока (1 ампер [А]), Sl - изменяемый магнитный поток (1 вебер [Вб]), t - время изменения магнитного потока (1 секунда (с)))

Переменный электрический ток

Если постоянный ток, как следует из названия - не меняет своих характеристик и направления в любой точке проводника, то переменный ток не отличается такими свойствами. Переменный ток - это ток, который с определённой периодичностью меняется по направлению, модулю и своей величине. На графике такой ток повторяет линию синуса с цикличными подъёмами и спадами.
явление электромагнитной индукции тока-08
Переменный ток очень широко распространён, т.к. его легко получать различными способами, а так же удобно и относительно просто передавать на большие расстояния. На электрических схемах традиционно обозначается значком с двумя волнистыми линиями.

Генератор электрического тока и его устройство

Устройства для получения электрического тока называются генераторами, от слова "генерировать" или создавать. Обычно принцип действия генераторов тока электромеханический, основанный на действии электромагнитной индукции, а именно получения электрического тока из преобразованного магнитного поля. Генераторы вырабатывают переменный ток в результате своей работы.
явление электромагнитной индукции тока-09
Генератор тока представляет собой достаточно сложное комплексное техническое устройство, однако в упрощённом варианте можно выделить основные его рабочие элементы: это ротор, который помещается внутри статора, и уже они вместе размещаются в каком-то корпусе. Ротор (от англ. "rotation") - подвижная часть, которая обычно вращается; Статор (от слова "статичный") - это неподвижная часть. Эти части являются аналогами катушки и магнита в классическом представлении электромагнитной индукции, где статор - это по сути катушка с большим количеством витков, а ротор представляет собой движущийся/вращающийся магнит.

Принцип действия прост и аналогичен идее с подвижным магнитом: ротор вращается с большой скоростью, при этом создаётся переменчивый магнитный поток вокруг него, который пронизывает витки обмотки статора и тем самым индуцирует/создаёт в них электрический ток. Ротор всегда вращается благодаря приложению какой-то сторонней механической силы. Статор же представляет собой некую конструкцию с прорезями или внутренним объёмом, в которые помещается обмотка из витков проводника.

Трансформатор тока и его особенности

Когда речь заходит о передаче тока на большие расстояния (в особенности переменного), то возникает необходимость его преобразования. Трансформатор - это устройство для преобразования электрического тока и напряжения.
явление электромагнитной индукции тока-10
Типовой трансформатор состоит из двух или более близкорасположенных катушек с обмоткой из проводника на общем основании. Когда на одну из катушек поступает переменный электрический ток, то в ней создаётся переменное магнитное поле. Первая катушка выполнена и рассчитана таким образом, чтобы магнитный поток пронизывал витки второй катушки, чтобы магнитное поле одной катушки "доставало" до другой. Таким способом во второй катушке так же будет создаваться электрический ток.

Если менять количество витков в разных катушках, то можно тем самым менять характеристики выходящего с трансформатора тока и напряжения, повышая или понижая его. По закону Ома получится, что когда трансформатор будет понижать значение электрического тока (I), то будет расти напряжение (U); и наоборот, с ростом электрического тока (I) - напряжение (U) будет закономерно падать.

Электромагнитное поле

Электрическое и магнитное поля тесно взаимосвязаны друг с другом. Известно ранее, что заряды движутся/протекают по структуре проводника благодаря действию электрического поля. В случае электромагнитной индукции так же возникает электрическое поле, только несколько отличающееся от того, которое создано источником тока. Такое электрическое поле индуцировано/создано переменным магнитным потоком и называется вихревым. Вихревое электрическое поле - это электрическое поле с замкнутыми силовыми линиями, по аналогии с линиями в магнитном поле.
явление электромагнитной индукции тока-11
Таким образом, при появлении переменного магнитного потока образуется вихревое электрическое поле, которое и вынуждает двигаться заряженные частицы в структуре проводника, а значит принцип "движущей силы" электрического поля не нарушается. Можно сказать, что переменное магнитное поле создаёт вихревое электрическое. Так и прослеживается тесное взаимососуществование электрического и магнитного полей, а именно: электрическое поле порождает вокруг себя магнитное в случае движущегося заряда по проводнику, а переменное/движущееся магнитное поле индуцирует вихревое электрическое поле. Именно по этой причине понятие полей часто не делят и называют возникшее вокруг движущегося заряда или переменного магнита поле электромагнитным.

Электромагнитные волны

Электромагнитное поле образуется вокруг движущихся заряженных частиц и распространяется в пространстве по уже известному волновому принципу. Такое распространение электромагнитного поля происходит при помощи электромагнитных волн или электромагнитных возмущений, подчиняясь физическим законам волновой природы. В отличие от механических волн (которые не могут существовать отдельно от какой-либо среды), электромагнитные волны могут проявляться без участия частиц, вещества и среды, например в вакууме. Электромагнитные волны в виде электромагнитных возмущений распространяются во все стороны от источника излучения. Для излучения ощутимой электромагнитной волны желательно наличие быстрого заряда с хорошим ускорением колебаний высокой частоты, например несколько десятков тысяч герц.
явление электромагнитной индукции тока-12
Электромагнитная волна обладает определёнными характеристиками, присущими любой волне. Скорость такой волны равняется скорости света и составляет 300000 км/с. Так же электромагнитные волны всегда поперечные по своей природе. Выражается в том, что линии магнитной индукции (магнитного поля) и силовые линии (электрического поля) перпендикулярны друг другу.

Если магнитное поле характеризует векторная величина магнитной индукции (B), то образованное из него вихревое электрическое поле характеризуется напряжённостью (E). Напряжённость электрического поля так же величина векторная и направленная, выражается в 1 Ньютон/Кулон (Н/Кл). Таким вкратце предстаёт явление электромагнитной индукции тока и сопутствующие электрические и магнитные.

Поделиться в соцсетях:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *